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Abstract. We study the effect of an idealized tip-induced electric field on the electronic
structure of a semiconductor surface containing defects. The embedding-potential method is
used to connect the Green’s functions of the solid and the vacuum. The corresponding localized
perturbation potential permits us to derive the Dyson equation for the Green’s function of the
full system. This equation is solved in real space on a discrete mesh. The polarization of the
surface with defects is determined inside the tunnelling barrier. It is found that the electronic
density over the clean surface responds more strongly to the tip-induced electric field than the
electronic density over the region containing defects.

1. Introduction

Scanning tunnelling microscopy (STM) [1] is now a well established tool for obtaining
images of surfaces at the atomic scale. Different models have been developed to explain the
STM contrast. These arise from perturbation theory [2] or treat the scattering phenomenon
inside the tunnelling junction more accurately [3]. It is apparent that most of these models
are based on zero- (electric-) field calculations. However, it is increasingly recognized that,
under particular conditions, tip–sample interactions such as the tip inducing an electric field
can play an important role.

In a recent paper, we investigated the contrast in STM images of a Si(001) surface
on which ethylene (C2H4) molecules were adsorbed [4]. The experiments [5, 6] produced
STM images for constant tunnel current in which the adsorbed molecules appeared slightly
darker than the bare silicon dimers when tunnelling out of the surface. We found that it was
necessary to account in ourab initio calculations not only for (i) the geometrical structure
of the system and (ii) the electronic structure of the unperturbed surface, but also (iii) the
modification of this electronic structure by the tip-induced electric field. Specifically, this
electric field had the effect of withdrawing electrons from the surface more strongly over
the bare silicon dimers than over the adsorbed molecules; this reversed the contrast of the
zero-field image in which the molecules were (incorrectly) predicted to be brighter than the
bare dimers.

This result can be interpreted as follows. The silicon substrate is more polarizable than
the alkene molecules which are deposited on it; it therefore seems reasonable that electrons
tunnelling into the vacuum above the bare surface respond more strongly to screen out the
applied field. However, applying the concept of polarizability to the tunnelling electrons
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involves extending it beyond its normal domain of validity. In the present paper, therefore,
we discuss a simple model of the situation in which we neglect all effects arising from
the atomic geometry, and concentrate entirely on the electronic structure and the effect of
the electric field upon it. Specifically, we represent the molecule as a region of locally
increased band gap (and hence, to use our previous language, reduced polarizability) on the
semiconductor surface. We neglect also the effects of the electric field within the material
and concentrate entirely on its influence on the wave functions in the vacuum. We show
that, in the energy range relevant for the experiments, the electron density (and tunnelling
current density) near the molecule is suppressed relative to that at the bare surface; this is
to be expected (although in the experiments and the full calculations this effect is somewhat
compensated by the fact that the molecules stand above the level of the rest of the surface).
However, our results also show that the relative suppression of electron tunnelling over the
moleculeincreasesas the field is raised. This confirms the validity of the simple picture
presented earlier: the electrons over the clean surface are responding more strongly to the
applied field.

We perform our calculations using a Green’s function technique associated with the
embedding method of Inglesfield [7] in order to determine the electronic density of our
model adsorbate–surface system. This work is also based on an equivalent version of the
scattering approach developed by Lucaset al [8] which has been used to study elastic
tunnelling in STM.

The paper is organized as follows. In section 2, we give a brief summary of the general
approach to the embedding-potential method. The model used to describe the adsorbate–
surface system is presented in section 3, together with the basic Dyson equation needed to
determine the electronic density of such a system. We derive the expression for the Green’s
function of the bare surface in the presence of an external electric field in section 4. The
forms of the embedding potentials are given in section 5. The Dyson equation is solved
using a discretization scheme (section 6). We also derive the solution of such an equation
in the case of a particular symmetry of the adsorbate (section 7). The electronic density of
the system and more especially its modifications due to the presence of the electric field
are presented in section 8. Finally we summarize the most significant results that we have
obtained, and discuss improvements and other applications of the method (section 9).

2. The embedding potential and the effective Hamiltonian: the general case

We consider a system (filling the whole space) which can be divided into two parts: a
limited region of space (region I) and the rest of the space (region II). Representative cases
for this situation are for example an impurity in an infinite crystal, and the surface of a
semi-infinite crystal. The basic idea of the embedding method is to solve the problem in
the perturbedregion of the crystal (region I) by adding to the corresponding Hamiltonian
an effective potential defined on the surfaceS separating regions I and II. The presence
of this surface potential (the embedding potential) automatically ensures that the wave
functions of region I match onto the rest of the space (region II). The embedding method
is reminiscent of standard Green’s-function-matching techniques [9–11]. For example, the
embedding potential that we present below is equivalent to the real-space representation of
theX-operators introduced by Noguera in her theoretical approach to STM [12].

Starting from the original paper by Inglesfield [7], we can derive the effective Hamil-
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tonian equation for the Green’s functionG(r, r′, E) of region I as follows:(
−1

2
∇2
r + V (r)− E

)
G(r, r′, E)+ 1

2
δ(n− nS)

×
[
∂

∂nS
G(r, r′, E)+ 2

∫
S

d2r′′S 6(rS, r
′′
S)G(r

′′
S, r
′, E)

]
= −δ(r − r′).

(1)

The vectorsr andr′ are located inside region I.rS andr′′S are vectors lying on the surface
S, andnS is the normal vector of this surface.

The general expression for the embedding potential6 defined on the separation surface
S is

6(rS, r
′′
S) =

∫
S

d2r′S G
−1
0 (rS, r

′
S)

[
δ(r′S − r′′S)−

1

2

∂

∂n′′S
G0(r

′
S, r
′′
S)

]
(2)

whereG0(r, r
′) is in principle any Green’s function of the entire system (regions I and II) in

the sense that the potential in region II should not be modified by the choice made as regards
filling region I. It is often convenient to use forG0 the Green’s function corresponding to
region II filling all of the space (this would correspond to an infinite perfect crystal in the
example above).

If G0 is chosen to satisfy the von Neumann boundary condition

∂

∂n′S
G0(rS, r

′
S) = 0 (3)

on the surfaceS, then the embedding potential takes the simple form

6(rS, r
′
S) = G−1

0 (rS, r
′
S). (4)

However, if we choose instead the Dirichlet boundary conditionG0(rS, r
′
S) = 0, then

by reworking the formalism from the beginning as in [7], it can be shown [14] that the
embedding potential can be expressed as

6(rS, r
′
S) = −

1

4

∂2

∂nS ∂n
′
S

G0(rS, r
′
S). (5)

Formally, since we consider the same physical system, the expressions (4) and (5) for
the embedding potential are equivalent. These potentials are calculated in a different way
from the different Green’s functions (obeying different boundary conditions) but for the
same system. The question of the validity of this equivalence of the embedding potentials
for different boundary conditions has been addressed by different authors [12, 13]. The
equivalence of the embedding potentials defined by equations (2), (4) and (5) is reminiscent
of the elegant demonstration given by Tekman of the calculation of the probability of
transmission between two half-spaces [13]. It has been shown that the same results are
obtained irrespective of the boundary conditions satisfied by the Green’s functions on the
separation surface. The only relevant boundary conditions are the ones which are satisfied
at infinity, that is, outgoing- or ingoing-wave boundary conditions. In the following, we
always consider waves (associated with the different regions I and II) propagating in the
same direction.
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3. The model for the adsorbate–surface system

The general formalism presented in the previous paragraph is well suited to the kind of
system that we want to study. The Si(001) surface on which an ethylene molecule is
deposited is represented by the following idealized model. The silicon surface is represented
by a semi-infinite two-band (valence and conduction) semiconductor (called semiconductor
I). The adsorbed molecule is represented by a region of the semiconductor having a larger
band gap than the semi-infinite surface. The presence of the adsorbate is localized in a
planar region (of arbitrary shape) lying on the surface of semiconductor I. This region will
be called the ‘defect region’ in the following. Then the natural choice for determining the
surfaceS is to take the planez = z0 to represent the surface of semiconductor I. The two
regions delimited by this plane are called for simplicity the left-hand region (semiconductor
I) and the right-hand region (the vacuum).

Figure 1. A schematic-diagram energy representation of the surface with defects and the electric
field applied in the vacuum.

In the vacuum, we add a linearly decreasing external potentialV ext corresponding to the
presence of an external electric field. This field represents an idealized tip-induced electric
field. As a first approximation we choose a uniform electric field parallel to the surface
normal:

V ext = W + ξext(z − z0). (6)

HereW represents the work function of the surface of semiconductor I andξext is the applied
electric field. We choose a negative value forξext, which corresponds to an idealized STM
experiment in which the electrons tunnel out of the surface. A schematic representation of
the present defect–surface system is shown in figure 1.

Now we can apply the formalism developed in section 2 to the present case. It is
useful to derive a set of two equations equivalent to equation (1). First we consider the
system without the defect region, i.e. only the left-hand region (semiconductor I) and the
right-hand region (the vacuum in the presence of the electric field). The equation equivalent
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to equation (1) is written as(
−1

2
∇2
r + V (r)− E

)
G0(r, r′, E)+ 1

2
δ(z − z0)

×
[
∂

∂z
G0(r, r′, E)+ 2

∫
S

d2x′′ 60(x,x′′)G0(x′′, r′, E)
]

= − δ(r − r′) with r, r′ in the right-hand region. (7)

Herex,x′′ are two-dimensional vectors lying in the surface planez = z0, G0 is the Green’s
function in the vacuum (in the presence of the electric field), and60 is the embedding
potential that permits us to match the wave functions in the vacuum with the electric
field (right-hand region) to the wave functions of the two-band semiconductor I (left-hand
region). According to the symmetry of the system, equation (6) can be transformed to a
one-dimensional problem as shown in the next section.

Next we consider the total system including the defect region on the surface of
semiconductor I. An equation similar to equation (7) can be written for the surface with
defects:(
−1

2
∇2
r + V (r)− E

)
G(r, r′′′, E)+ 1

2
δ(z − z0)

×
[
∂

∂z
G(r, r′′′, E)+ 2

∫
S

d2x′′ 6(x,x′′)G(x′′, r′′′, E)
]

= − δ(r − r′′′) with r, r′′′ in the right-hand region. (8)

Now multiply equation (7) byG(r′′′, r) and equation (8) byG0(r′, r), subtract, and
integrater over the right-hand region, using the fact that the embedding potentials60 and
6 are symmetric and so, therefore, are the Green’s functionsG0 andG, i.e. G(r, r′) =
G(r′, r) and6(x,x′) = 6(x′,x), to obtain a Dyson equation:

G(r′, r′′′, E) = G0(r′, r′′′, E)+
∫
S

d2x

∫
S

d2x′′ G0(r′,x, E)16(x,x′′)G(x′′, r′′′, E)

(9)

with r′, r′′′ located in the right-hand region. Here16 represents the perturbation potential
due to the presence of the defect region on the surface planeS. This potential is obtained
from the difference of the embedding potentials:16(x,x′) = 6(x,x′)−60(x,x′).

The Dyson equation (equation (9)) is the basic formula that we use to determine the
electronic density of the defect–surface system and the modifications of such a density
according to the value of the external electric field. Before solving this equation, we derive
the expressions for the Green’s functionG0 and for the embedding potentials.

4. The Green’s functionG0 in an external field

Due to the translational invariance in thex-direction of the planar surfaceS, equation (7)
can be Fourier transformed according to

G0(r, r′, E) = G0(x− x′, z, z′, E) = 1

(2π)2

∫
d2k‖ g0(z, z′, k‖)eik‖·(x−x′) (10)

to give for each Fourier componentg0(z, z′) the following Green’s function equation:(
1

2
k2
‖ −

1

2

d2

dz2
+ V ext(z)− E

)
g0(z, z′)+ 1

2
δ(z − z0)

[
d

dz
g0(z0, z

′)+ 260(k‖)g0(z0, z
′)
]

= − δ(z − z′) for z, z′ > z0. (11)
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Note that for simplicity we sometimes drop the energy ork‖ (wave-vector) label in the
expression for the Green’s functions.

The corresponding one-dimensional Schrödinger equation can be reformulated to give
the second-order differential equation

f ′′(ζ )− ζf (ζ ) = 0 (12)

after the change of variable given byζ = ρz + η where

ρ = −(2|ξext|)1/3 (13)

η = (2|ξext|)−2/3(2(W − E)+ k2
‖). (14)

Note that we have chosen a negative value for the electric field, and that the planar surface
S is located at the originz0 = 0.

Two independent solutions of equation (12) are known as the Airy functions [15] Ai(ζ )

and Bi(ζ ). We wish to consider wave functions propagating out of the surface to the right,
since this corresponds to the direction of electron transport when the field is biased in this
direction. These wave functions (ϕ) are obtained as complex linear combinations of the
Airy functions, for instanceϕ(z) = α(Ai(ζ )− i Bi(ζ )), α being the normalization constant.
In order to show that theϕ represent particles travelling to the right, we can calculate the
current associated with such wave functions. The one-dimensional current densityj (z)

associated with a wave function9(z) is expressed as

j = 1

2i
(9∗ ∇z9 −9 ∇z9∗). (15)

Then choosing9 = ϕ and knowing that the Wronskian of the two Airy functions is
W(Ai(z),Bi(z)) = π−1, we can find that the current density associated with a wave function
ϕ is given by

j = −πα2ρ. (16)

Since we consider negative values of the electric field,ρ is by definition (equation (13))
negative and thereforej is positive, meaning that theϕ-state propagates to the right. Another
important point can be derived from equation (16): it is easily shown that the current density
j is simply proportional to the local density of states (n(E, z) = ∫ dε |ϕ(E, z)|2δ(ε − E))
taken in a plane (z = constant) parallel to the surfaceS. This is why we consider only the
effects of the electric field on the local density of states in the following; thez-component
of the current density can always be obtained by a simple rescaling.

Then the Green’s functiong0(z, z′) is constructed from the Airy functions using
the standard method to determine a one-dimensional Green’s function from an non-
homogeneous Sturm–Liouville equation, as can be found for example in [16]. The matching
of the wave functionsϕ to the surface planez = z0 is obtained via the embedding potential
60(k‖). After some algebra, we find that the symmetric Green’s functiong0(z, z′) is given
in the right-hand region by

g0(z, z′) = u(ζ>)v(ζ<)

− 1
2W(u, v)

(17)

where

u(ζ ) = Ai(ζ )− i Bi(ζ ) (18)

v(ζ ) = Ai(ζ )+ R(ζ0)Bi(ζ ) (19)

where the Wronskian of the wave functionsu andv is

W(u, v) = ρ

π
(R(ζ0)+ i). (20)
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In equation (17),ζ< andζ> are respectively the smaller and largerζ -values associated with
z, z′ andζ0 = ρz0+ η. In the above equations,R is the complex reflection coefficient

R(ζ0) = −ρ Ai ′(ζ0)+ 260(k‖)Ai(ζ0)

ρ Bi′(ζ0)+ 260(k‖)Bi(ζ0)
(21)

where Ai′ and Bi′ are the derivatives of the Airy functions. The presence of the factorR(ζ0)

is in principle equivalent to matching the logarithmic derivative of the wave functionsϕ to
the logarithmic derivative of the wave functions of the left-hand region on the surface plane
z = z0.

G0(r, r′) is then calculated by Fourier transforming equation (17) as in equation (10).
This latter equation can be rewritten as

G0(r, r′) = 1

2π

∫ ∞
0

dk‖ k‖g0(z, z′, k‖)J0(k‖|x− x′|) (22)

sinceg0 depends only on the amplitude of the wave vectork‖, J0 being the cylindrical
Bessel function of order 0. However, as already noticed by Lucaset al [8], the integral in
equation (22) presents some numerical convergence difficulties for largek‖-values and more
especially whenz = z′. This is due to the slow oscillatory decay behaviour of the Bessel
function J0(x) for large x-values. An acceleration scheme can be introduced. It is based
on the fact that for largek‖-values, the Green’s functiong0 tends towards a corresponding
free-electron Green’s functiongf . Indeed for very largek‖-values, the Green’s function
equation (11) has the solution−exp(−k‖|z − z′|)/k‖. This idea was introduced by Lucas
et al [8] for the case in which the unperturbed system contains no electric field. We have
checked that it can still be used even with the electric field present; we find that the Green’s
function tends asymptotically to

gf (z, z′) = −1

κ
e−κ|z−z

′| (23)

whereκ2 = k2
‖ − 2(E − V ext(z<)) and z< is the smaller ofz, z′. Hence by adding and

subtracting the free-electron Green’s functiongf in the expression forg0, we can rewrite
equation (22) as

G0(r, r′, E) = Gf (r, r′, E)+ 1

2π

∫ kmax
‖

0
dk‖ k‖J0(k‖|x− x′|)[g0(z, z′, k‖)− gf (z, z′, k‖)]

(24)

wherekmax
‖ is the value above which the difference term inside the brackets in the integral

is negligible.Gf is the two-dimensional Fourier transform ofgf :

Gf (r, r′, E) = − 1

2π

eiK|r−r′|

|r − r′| (25)

whereK2 = 2(E − V ext(z<)). Note that we also consider the corresponding complexK-
values when the value of the energyE is lower than the value of the potentialV ext(z<);
these areK = +i

√
2(V ext(z<)− E).

This special scheme, as already used by Lucaset al [8], permits us to obtain an efficient
numerical convergence of the integral in equation (22). ThenG0(r, r′) is calculated via
equation (24).

Now in order to achieve the complete determination of the real-space Green’s function
G0(r, r′, E) and to start solving the Dyson equation, we have to know the expression for
the one-dimensional embedding potential60(k‖) and of the real-space embedding potentials
60 and6. Such expressions are derived in the next section.
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5. Embedding potentials

We adopt a very simple model for the Green’s function for semiconductor I. We write such
a Green’s function as

G(I) = Gc +Gv (26)

whereGc is the Green’s function for a free-electron-like conduction band with the dispersion
relation

E = Ec + 1

2
k2 (27)

andGv is the Green’s function for a free-electron-like valence band with the dispersion
relation

E = Ev − 1

2
k2. (28)

It would be straightforward to include different effective masses for the conduction and
valence bands, but we have not done this. The resulting Green’s function has the correct
analytical properties (it is real in the band gap betweenEv andEc and complex within the
allowed energy bands), and its imaginary part yields the correct free-electron-like densities
of states for both conduction and valence bands. This choice of Green’s function then
determines the embedding potential in the form

60 = 60
c +60

v (29)

where 60
v and 60

c are the embedding potentials of the free-electron-like valence and
conduction bands.

As mentioned in section 3, we take the defect to be a region of semiconductor with a
larger band gap (E(II)g ) than the rest of the surface (band gapE(I)g ). We choose the embedding
potential6 of the surface with defects such that the perturbation potential16(x,x′) 6= 0
if and only if x and x′ are located inside the defect region. In that case, we take the
embedding potential6 to be that of another bulk semiconductor with a wider band gap (so
that the expressions for the Green’s functions are the same as those given above, but with
a larger valueE(II)g > E(I)g ).

5.1. The one-dimensional embedding potentials60(k‖)

For the defect-free surface, we can write a one-dimensional equivalent of equation (2) by
exploiting translational symmetry in the surface plane:

60(k‖) = g−1
(I) (z0, z0)− 1

2
g−1
(I) (z0, z0)

d

dz′
g(I)(z0, z

′)
∣∣∣∣
z′=z0

. (30)

The one-dimensional Green’s functiong(I)(z, z′) is the Fourier transform of the Green’s
functionG(I) of the two-band semiconductor I. Then the embedding potentials60

v and60
c

of the valence and conduction bands are given by

60
v =


+ i

2

√
2(Ev − E)− k2

‖ for 2(Ev − E)− k2
‖ > 0

−1

2

√
2(E − Ev)+ k2

‖ otherwise
(31)
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and

60
c =


+ i

2

√
2(E − Ec)− k2

‖ for 2(E − Ec)− k2
‖ > 0

−1

2

√
2(Ec − E)+ k2

‖ otherwise.
(32)

These forms for the embedding potential are used to calculate the one-dimensional
Green’s functiong0(z, z′) in equation (17).

In principle, the corresponding real-space embedding potential60(x,x′) could be
obtained by Fourier transforming60(k‖) as in equation (10) or equation (22). However,
there is a problem of convergence in the integral of equation (22). Indeed for largek‖-
values,60(k‖) is proportional tok‖ andJ0 to 1/

√
k‖. Hence we adopt a different strategy

to determine the embedding potential, by using the real-space form which is described next.

5.2. Embedding potentials in real space

As already mentioned in section 2, it is possible to obtain the embedding potential on
the separation surfaceS by considering Green’s functions obeying different boundary
conditions. Then, instead of working in reciprocal space, we start with a Green’s function
for the left-hand region (semiconductor I) defined in real space and obeying a Dirichlet
boundary condition on the planez = z0:

Gc,v(r, r
′) = − 1

2π

(
eikc,v |r−r′|

|r − r′| −
eikc,v |r−r′′|

|r − r′′|
)

(33)

where the subscriptsc, v denote conduction and valence band respectively, andr′′ is the
image ofr′ in thez = z0 plane. This means that ifr′ ≡ (x1, x2, z

′) thenr′′ ≡ (x1, x2,−z′).
Then the corresponding real-space embedding potential is obtained from the surface

derivatives of equation (33) as defined in equation (5). It is easy to show that

6c,v(x,x
′) = − 1

4π

(
eikc,v |x−x′|

|x− x′|2
[

ikc,v − 1

|x− x′|
])
. (34)

The embedding potential60(x,x′) is obtained as the sum of the valence and conduction
embedding potentials6v and6c. This means that60 is a complex (decaying) exponential
function of the separation|x − x′| when the energyE lies inside (outside) one of the
bands. Finally the perturbation potential16 used in the Dyson equation, equation (9), is
determined from

16(x,x′) = 6(x,x′)−60(x,x′). (35)

The mathematical forms of6 and60 are the same; only the band gapsE(II)g andE(I)g are
different. Note thatE(II)g in the defect region is larger thanE(I)g .

6. Calculations on a discrete mesh

Knowing the expressions in the real space for the perturbation potential16 and for the
Green’s functionG0, we are now able to solve the Dyson equation. There are different ways
of solving such an integral equation. However, owing to the localization of the perturbation
potential in the defect region, we can conveniently recast the Dyson equation in the form
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of matrix equations over a finite set of grid points. Hence we can rewrite equation (9) in
the following form:

Grr ′ = G0
rr ′ +

∑
ij

G0
riwi 16ij wjGjr ′ (36)

where thewi represent the weights for the numerical integration method used to discretize
the integrals. For convenience we use indicesi, j, k, . . . for points lying in the surface plane
z = z0 and indicesr, r ′ for other points.

Because of the symmetry of the present problem, it is not necessary to solve the matrix
equation on a three-dimensional cubic grid. In order to reduce the matrix sizes and save on
computing time, it is sufficient to consider two sets of grids defined on two different planar
surfaces, the surface planez = z0 and another planez = z1 located further away in the
vacuum. Hence in order to obtain the Green’s functionGrr ′ in the planez = z1, we can
proceed via a three-step calculation.

(i) The first step consists in determining the Green’s function only on the surface plane
z = z0; for instance

Gij = G0
ij +

∑
kl

G0
ikwk 16kl wlGlj . (37)

Then the matrixGij is obtained by inverting the matrix(1−G016)ij and multiplying by
G0
ij .

(ii) The second step is to choose anr-point in the planez = z1 and to calculate the
vectorG0

ri . Then the vectorGri is simply obtained by matrix and vector multiplications:

Gri = G0
ri +

∑
jk

G0
rjwj 16jk wkGki. (38)

(iii) The last step is in principle to choose anotherr ′-point in the planez = z1, calculate
the vectorG0

r ′i and thenGrr ′ . However, since we are interested in the local density of
states, we only have to consider the diagonal matrix elementsGrr . The calculations are
then reduced since all of the necessary elements are already known (except the numberG0

rr ).

The second and third steps are repeated for all of ther-points in the planez = z1. Note that
the calculations are also considerably reduced in complexity by the fact that the Green’s
functions and the embedding potentials are symmetric (i.e.Grr ′ = Gr ′r and16ij = 16ji).

Although with the previous scheme it seems to be easy to obtain the Green’s function
in the planez = z1, some difficulties arise form the fact that the real parts of the Green’s
functionG0 and the perturbation potential16 have divergent matrix elements whenr = r′
andx = x′ respectively. From equations (24) and (25), we have

lim
r→r′

ReG0(r, r′) = g 1

|r − r′| + constant (39)

whereg = −1/2π . Similarly, from the definition of the embedding potentials (section 5.2),
it can been shown that for any energy values

lim
x→x′

Re16(x,x′) = 1 1

|x− x′| + constant (40)

where1 = (E(II)g − E(I)g )/(−4π). This can be checked from power expansion of equation
(34) when R‖ = |x − x′| tends to zero. It can be seen from the Dyson integral
equation that such singularities can be cancelled analytically in the integrals. However,
now all quantities are determined on a finite set of grid points (with a fairly coarse grid
spacing) and the continuum limit is only achieved for very small grid spacing. Therefore
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the matrix representation of the Dyson equation has to be modified to handle carefully
these singularities in the diagonal matrix elements of the Green’s function and embedding
potentials. In order to treat such singular diagonal matrix elements, we follow the same
procedure as given in the appendix of reference [8]. The present modified version of this
procedure is described in the appendix to this paper. Then the modified equations for our
three-step calculations become as follows.

(i) The corrected equation for the surface Green’s functionGij is written to the first
order inη as follows (η defining the radius of an elementary circular surface around each
singularity point, such a surface being related to the regular grid spacing byπη2 = δx×δy):

Gij =
[
(1− Ĝ0 1̂6)−1G̃0

]
ij
+ gδij 1

|ε|
+ 2πgη

([
1̂6(1− Ĝ0 1̂6)−1G̃0

]
ij
+
[
1̂6(1− Ĝ0 1̂6)−1G̃0

]
ji

)
+ 2πgη

[
(1− Ĝ0 1̂6)−1Ĝ0 1̂6 1̂6(1− Ĝ0 1̂6)−1G̃0

]
ij

+ 2πη
∑
k

[
(1− Ĝ0 1̂6)−1Ĝ0

]
ik
1k

[
(1− Ĝ0 1̂6)−1G̃0

]
kj
. (41)

G̃0 and 1̃6 are the Green’s function and perturbation potential matrices where we have
removed the real-part singularities of the diagonal matrix elements; andĜ0

ij = G̃0
ijwj ,

1̂6ij = 1̃6ij wj . Here1k is equal to1 as defined in equation (40) when the surface
vector labelledk is inside the defect region, and otherwise1k = 0. The second and third
lines in equation (41) correspond to corrections due to the singularities associated with the
Green’s functionG0. They are similar to the correction terms introduced in equation (A9)
of reference [8]. Here we have supplementary correction terms (the last line in equation
(41)) as compared to equation (A9) of reference [8]. These are due to the singularities
of the perturbation potential16 which are not present in the local perturbation potential
considered by Lucaset al [8]. These results are exact in the perturbation sense, since we
have considered all terms of the Born series expansion of the Dyson equation. However,
such correction terms are only expanded to the first orderη in the linear spacing of the grid.

(ii) The Dyson equation for the second step of calculation can be written as

Gri = G̃0
ri +

∑
jk

G̃0
rjwj 16jk wkGki. (42)

We can useG̃0 because anyr-vectors lying in the planez = z1 are different from any
i-vectors lying in the planez = z0. We have to take into account the corrections due to the
singularities of16jk andGki which give us

G̃ri = G̃0
ri +

∑
j l

Ĝ0
rj 1̂6jl G̃li + 2πη

∑
j

Ĝ0
rj1j G̃ji + 2πgη

∑
j

1̂6ij G̃
0
jr . (43)

G̃ij is obtained from equation (41) by suppressing the diagonal singularityδij /|ε|.
(iii) Finally the third step of the calculation is

Grr = G̃0
rr + gδrr

1

|ε| +
∑
jk

G̃0
rjwj 16jk wkG̃kr (44)

which in its corrected form gives

Grr = G̃0
rr + gδrr

1

|ε| +
∑
j l

Ĝ0
rj 1̂6jl G̃lr + 2πη

∑
j

Ĝ0
rj1j G̃jr . (45)
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Equations (41), (43) and (45) are now used to determine the local density of states
n(E, r) = −(1/π) ImGrr(E) from the imaginary part of the Green’s functionGrr on the
planez = z1.

7. The adsorbate with an axial symmetry

In this section, we consider a particular symmetry for the defect region. This region is
chosen to be a circle of radiusR centred at the origin. According to the axial symmetry
of the system, every important quantity such as the wave functions, the Green’s functions
and the embedding potentials can be represented by harmonic expansions, owing to the
invariance of such quantities under variation of the value of the angleφ between any two
two-dimensional vectorsx = (ρ, φ). The physics and the procedures that we have derived
in the previous sections are not modified in principle. In this section, we just give the
harmonic representation of the relevant equations.

Hence the Green’s functions and the embedding (or perturbing) potentials, represented
by the functionf (x,x′), are expanded as follows:

f (x,x′) =
+∞∑

m=−∞
fm(ρ, ρ

′, z, z′)eim(φ−φ′). (46)

According to the Graf addition theorem [17]:

J0(k‖|x− x′|) =
∑
m

Jm(k‖ρ)Jm(k‖ρ ′)eim(φ−φ′) (47)

the harmonic decomposition of equation (24) is

g0
m(ρ, ρ

′, z, z′) = gfm(ρ, ρ ′, z, z′)

+ 1

2π

∫ kmax
‖

0
dk‖ k‖Jm(k‖ρ)Jm(k‖ρ ′)

[
g0(z, z′)− gf (z, z′)]. (48)

Finally using the orthogonality relation∫ +π
−π

dφ1 ei(m−m′)φ1 = 2πδm,m′ (49)

we obtain the following Dyson equation for eachmth-harmonic component (harmonic
decomposition of equation (9)):

gm(ρ, ρ
′, z, z′) = g0

m(ρ, ρ
′, z, z′)+ (2π)2

∫ R

0
dρ1 ρ1

∫ R

0
dρ2 ρ2g

0
m(ρ, ρ1, z, z0)

× 1σm(ρ1, ρ2)gm(ρ2, ρ
′, z0, z

′) (50)

where1σm is themth-harmonic component of16 obtained from equation (46).
Then we have to determine an equivalent procedure to treat the singularities of the

Green’s functiong0
m and the perturbation potential1σm. The singularities ing0

m arise from
g
f
m, and the latter is calculated from the inverse of equation (46) via

gfm(ρ, ρ
′, z, z′) = g

π

∫ π

0
dφ1 cos(mφ1)

eiK(a−b cosφ1)
1/2

(a − b cosφ1)1/2
(51)

wherea = ρ2+ρ ′2+ (z−z′)2 andb = 2ρρ ′. Such an integral is well behaved except when
a = b. It can be seen that in such a case, the imaginary part of the integrand has a finite
value forφ1 = 0, and consequently it can be integrated without any difficulties. However,
the real part diverges as(a−b cosφ1)

−1/2. In equation (51) the real-part singularity arises at
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aroundφ1 = 0 (whena = b), and hence the integral can be approximated by the following
one:

g

π

∫ π

0
dφ1

1√
a − b cosφ1

. (52)

This integral is a complete elliptic integral of the first kind, and according to equations
(61)–(63) of reference [8], one obtains a logarithmic singularity for the Green’s function.
Then considering a power expansion of the perturbation potential16(x,x′) whenx→ x′,
it can be seen that the corresponding imaginary part also has a finite value whena = b and
φ1 = 0, and that the real part diverges in the same way as the Green’s functiong

f
m. Hence

we obtain for the real part of both the perturbation potential1σm and the Green’s function
g0
m the following logarithmic singularity:

lim
ε→0

Re

[
g0
m

1σm

]
(x,x+ ε) = − 1

πρ
ln

(
ε

8ρ

)[
g

1

]
. (53)

The harmonic expansion equation (50) of the Dyson equation can then be corrected using a
procedure similar to that given in the appendix. Here the one-dimensional integrals

∫
dρ are

decomposed into different segments. We define small segments (of lengthη) around points
where the singularities occur. The latter can be evaluated analytically from the following
elementary integral:∫ η

0
dε ε ln

(
ε

8ρ

)
= 1

4
η2

(
ln

(
η

8ρ

)2

− 1

)
. (54)

This equation is the analogue of equation (A3). Then we obtain for them-component of
the harmonic expansion of the Dyson equation defined on the surface planeS

g̃m,ij =
[
(1− ĝ0

m 1̂σm)
−1g̃0

m

]
ij
+ 2πg

(
c(ρi)

[
1̂σm(1− ĝ0

m 1̂σm)
−1g̃0

m

]
ij

)
+ 2πg

(
c(ρj )

[
1̂σm(1− ĝ0

m 1̂σm)
−1g̃0

m

]
ji

)
+ 2πg

[
(1− ĝ0

m 1̂σm)
−1ĝ0

m 1̂6 c(ρ) 1̂6(1− ĝ0
m 1̂σm)

−1g̃0
m

]
ij

+ 2π
∑
k

[
(1− ĝ0

m 1̂σm)
−1ĝ0

m

]
ik
1kc(ρk)

[
(1− ĝ0

m 1̂σm)
−1g̃0

m

]
kj

(55)

where

c(ρ) = 1

4πρ
η2

(
1− ln

(
η

8ρ

)2)
. (56)

Again 1k = 1 if and only if 0 6 ρk 6 R and otherwise1k = 0. We have used the
factorizations

ĝ0
m,ij = g̃0

m,ij 2πwjρj (57)

and

1̂σm,ij = 1̃σm,ij 2πwjρj (58)

where g̃0
m and 1̃σm are them-components of the harmonic expansions ofG0 and16

respectively, where we have suppressed the logarithmic singularity of the diagonal elements.
The equivalent harmonic expansions of equations (43) and (45) are straightforward to obtain
when one considers equation (55).
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Figure 2. The negative of the imaginary part of the harmonic componentgm(ρ, ρ, z1, z1) versus
the radial distanceρ in Å. The value of the electric field isξext = −0.9 V Å−1. The energy
is close to the top of the valence band of semiconductor I. The location of the planez = z1

(z1 = 2.65 Å) is inside the tunnelling barrier.m = 0: full line; m = 1: dotted line;m = 2:
dashed line;m = 3: long-dashed line; andm = 4: chain line.

8. Results

As a first study, we consider a circular defect deposited on the surface of semiconductor
I. Therefore we use the formalism described in section 7 to determine the local density of
states in a plane located in the vacuum. The values for the different parameters that we use
have been chosen from the literature to be typical of hydrocarbon molecules deposited on
silicon. For example, semiconductor I is represented by a silicon crystal with a band gap
of E(I)g = 1.12 eV and a work function ofW = 4.5 eV. The defect region is considered to
be a semiconductor with a gap larger thanE(I)g . Most of the organic (alkane-like) crystals
have band gaps ranging from 4 to 10 eV. Therefore we take forE(II)g an intermediate value:
E(II)g = 6.0 eV, the latter being in agreement with the energy difference between the HOMO
and LUMO states obtained for a single isolated ethylene molecule in LDA calculations. The
radius of the defect region is chosen to beR = 2.3 Å which is approximately the radius of
a circular region covering an adsorbed ethylene molecule on the silicon surface. Finally,
the values of the external applied electric field are deduced from typical STM experimental
conditions. It is reasonably assumed that typical bias values range between 1 and 3 V, and
estimated tip–sample distances between 2 and 6Å. Hence the corresponding tip-induced
electric fieldξext varies approximately between 0.16 and 1.50 eVÅ−1. In order to simulate
STM experiments in which the electrons tunnel out of the surface, negative values for
ξext have been taken and the corresponding Green’s functions are calculated for energies
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E close to the top of the valence band of semiconductor I, but within the band gap of
semiconductor II.

Figure 2 represents the (negative of the) imaginary part of several harmonic components
gm(ρ, ρ, z1, z1) in the planez1 = 2.65 Å. Note that in this case, the value ofz1 is lower
than the value of the classical turning pointztp = (W − E)/|ξext| , i.e. the planez = z1 is
located inside the tunnelling barrier. The general shape of the differentgm is reminiscent
of that of the integral ofJ 2

m(x) as found in equation (48). The Green’s functionGrr is
calculated from equation (46). However, due to the symmetry of the Green’s function,Grr

can be obtained from

Grr = g0(ρ, ρ, z1, z1)+ 2
+∞∑
m=1

gm(ρ, ρ, z1, z1). (59)

It is not necessary to perform the summation in equation (59) to infinity;Grr can be
obtained with a very good accuracy by considering only the first few harmonic components.
In practice, the summation runs fromm = 0 tommax= 10.

Figure 3. The local density of statesn(E, r) calculated from thegm-components shown in
figure 2 versus the radial distanceρ given in Å. The corresponding values ofn(E, r) for the
perfect surface with the gapsE(I)g andE(II)g are represented respectively by the short-dashed and
long-dashed lines.

The corresponding local density of statesn(E, r) is shown in figure 3. As expected, the
value ofn(E, r) for a surface that does not contain defects (the semiconductor surface with
the gapE(I)g ) is recovered far from the defect (ρ � R). At the centre of the defect (ρ = 0),
the value ofn(E, r) is almost equal to that of the semiconductor surface with the gapE(II)g

(strictly equal in the case of large values of the defect radiusR). Note that the modification
of the local density of states due the defect extends over a larger distance than the defect
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radius itself. The fact that the density-of-states values above the region with defects are
smaller is essentially due to the fact that the defect has a band gap larger than that of the
surface itself.

The same trends have been observed for different values of the energyE and for different
locations of the planez = z1 (inside and outside of the tunnelling barrier). Of course, the
larger the energy differenceW −E is (and the further the planez = z1 is placed away from
the surface plane), the lower the values ofn(E, r) become.

Figure 4. A 3D view of the polarization local density of states1n in the planez = z1.
1n is calculated from the two different values of the electric fieldξext

1 = −0.90 V Å−1 and
ξext

2 = −0.77 V Å−1.

By increasing the (absolute) value of the electric fieldξext, one reduces the tunnelling
barrier width, and consequently the values of the local density of states increase in the
vacuum. In order to quantify the influence ofξext on the local density of states above the
bare surface and the defect, we consider the polarization density of states1n defined by

1n(E, r) = n(E, r)|ξext
1
− n(E, r)|ξext

2
whereξext

1 > ξext
2 . (60)

(It is convenient to compare the results for two non-zero values ofξext because the
formulation in terms of Airy functions becomes singular atξext = 0.) A typical example
of the behaviour of the polarization density of states is shown in figure 4. These results
definitively show that the influence of the electric field is more important above the bare
surface than above the defect, since we observe a relative suppression of the local density
of states above the defect region. In other words, due to the electric field, the ‘spreading’
of electronic states in the vacuum is less important above the defect region than above the
bare surface. Such a behaviour has been already obtained in our previous study of adsorbed
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ethylene molecules on the Si(001) surface usingab initio calculations [4]. This behaviour
reminds us of the fact that the defect has a band gap larger than that of the bare surface
itself, i.e. the defect is less polarizable than the bare surface.

9. Conclusion

In this paper, we have studied the influence of an external electric field on the electronic
structure of a surface with defects made up of semiconductors. A general approach to
determining the Green’s function for such a complex system has been presented. The
method combines the use of embedding potentials and the resolution of the Dyson equation
on a discrete mesh. As a first step, we have used simple (but not the simplest) forms for
the embedding potentials of the surface and defect regions. These have been represented by
two-band semiconductors. The polarization of the surface with defects has been studied in
the ‘non-classical’ regime. It has been found that the response of the electronic states to the
tip-induced electric field is spatially modulated by the surface and the defect (adsorbate), the
defect being less polarizable than the bare surface itself. This behaviour is in agreement with
ab initio calculations performed for ethylene molecules adsorbed on a Si(001) surface [4].
Improvements of the present embedding approach are still possible. An atomic description
of an adsorbate deposited on a jellium surface has been proposed in the recent work of
Trioni et al [18]. However, for an atomic description of both the adsorbate and the surface,
an ab initio slab calculation is straightforward [4].
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Appendix

In this appendix, we show how to treat the singularities of the diagonal elements of the
Green’s functionG0 and the perturbation potential16 defined respectively by equations
(39) and (40). First we consider the Born series expansion of the Dyson equation, equation
(9). For the vectorsx andx′ lying in the surface planez = z0 (also denoted asS), the first
term of the Born seriesG(1)(x,x′) is written as

G(1)(x,x′) =
∫
S

d2x1

∫
S

d2x2 G
0(x,x1)16(x1,x2)G

0(x2,x
′). (A1)

The integrals
∫
S

d2x1 and
∫
S

d2x2 are decomposed into different parts wherein the
singularities can be treated analytically. Each singularity ofG0 or16 is treated separately.
Starting with

∫
S

d2x2 we have∫
S

d2x2 16(x1,x2)G
0(x2,x

′) =
∫
S ′

d2x2 16(x1,x2)G
0(x2,x

′)

+ 16(x1,x
′)
∫
Sx′

d2x2
g

|x2− x′| +G
0(x1,x

′)
∫
Sx1

d2x2
1

|x1− x2|
(A2)
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where Sx1 (Sx′) represents a small circular region of radiusη centred aroundx1 (x′)
respectively.

∫
S ′ is a surface integral over the surface planeS excluding these two small

circular regions (S ′ = S − Sx1− Sx′).
In the limit of smallη-values, the integrals in the second line of equation (A2) can be

evaluated analytically. For example,∫
Sx′

d2x2 g
1

|x2− x′| = g
∫ 2π

0
dφ
∫ η

0
dε ε

1

ε
= 2πgη (A3)

where we write symbolicallyx2 = x′ + ε. The radiusη of the circular regions is related to
the regular grid spacingδx andδy by πη2 = δx × δy.

Then we can treat the
∫
S

d2x1 integral in equation (A1) in the same manner as previously.
Keeping only the terms in the first order ofη, we obtain for equation (A1) the following
corrected version:

G(1)(x,x′) =
∫
S

d2x1

∫
S

d2x2 G̃
0(x,x1) 1̃6(x1,x2) G̃

0(x2,x
′)

+ 2πgη
∫
S

d2x1 G̃
0(x,x1) 1̃6(x1,x

′)+ 1̃6(x,x1) G̃
0(x1,x

′)

+ 2πη
∫
S

d2x1 G̃
0(x,x1)1(x1)G̃

0(x1,x
′) (A4)

whereG̃0 and1̃6 are the corresponding Green’s function and perturbation potential, where
we have removed the singularities of the diagonal elements.1(x1) is equal to1 defined in
equation (40) if and only ifx1 is located in the defect region; otherwise1(x1) = 0. Then
treating all orders of perturbation in the Born series expansion, and keeping terms up to
orderη, we obtain the corrected Dyson equation on the surface planeS. As an illustration
we give the corrected expression for the second term of the Born series:

G(2)(x,x′) = [G016G016G0
]
x,x′

=
[
G̃0 1̃6 G̃0 1̃6 G̃0

]
x,x′
+ 2πη

[
G̃01G̃0 1̃6 G̃0+ G̃0 1̃6 G̃01G̃0

]
x,x′

+ 2πgη
[
1̃6 G̃0 1̃6 G̃0+ G̃0 1̃6 G̃0 1̃6

]
x,x′

+ 2πgη
[
G̃0 1̃6 1̃6 G̃0

]
x,x′

. (A5)

The corrections propagate throughout the entire Born series expansion. Such correction
terms can therefore be resummed or factorized. According to the appendix of reference [8],
we obtain the closed form for the corrected Dyson equation in the surface planeS, which
is given in the matrix representation by equation (41).
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